首页 | 官方网站   微博 | 高级检索  
     


Homology of selenium (Se) and tellurium (Te) endow the functional similarity of Se-doped and Te-doped mesoporous bioactive glass nanoparticles in bone tissue engineering
Affiliation:College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
Abstract:The focus of bone tissue engineering is to realize the regeneration of new functional bone through the synergistic combination of biomaterials, therapeutic agents and cells. Doping of mesoporous bioactive glass (MBG) nanoparticles with therapeutic ions to give them special properties is gaining increasing interest in the design of biomaterials for bone tissue engineering. In this study, we synthesized Se-doped and Te-doped MBG nanoparticles using the sol-gel method, and demonstrated for the first time that the homology of Se and Te endows the functional similarity of bone tissue engineering, and also obtains the desired properties by guiding cell behavior and changing the physicochemical properties of the biomaterial. Results found that MBG nanoparticles doped with Se and Te respectively can be gained similar structure, and thus endowed their similar properties as expected, such as drug sustained release, anticancer and antibacterial properties in a dose-dependent manner. This study provides a feasible strategy for the development of homologous group ions doped nanobiomaterials and their evaluation and basic research in bone tissue engineering.
Keywords:Selenium  Tellurium  MBG nanoparticle  Homologous  Bone tissue engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号