首页 | 官方网站   微博 | 高级检索  
     


Material removal profile prediction and experimental validation for obliquely axial ultrasonic vibration-assisted polishing of K9 optical glass
Affiliation:1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, PR China;2. Liaoning Provincial Key Laboratory of High-end Equipment Intelligent Design and Manufacturing Technology, Northeastern University, Shenyang, 110819, PR China
Abstract:K9 optical glass is one of the typical components in optical systems. However, because of its poor fracture resistance, it is difficult to polish it with ultra-precision and high-efficiency and without any surface damage simultaneously. The emergence of the obliquely axial ultrasonic vibration-assisted polishing (UVAP) method can solve this problem which encounters in polishing efficiency and shape accuracy. However, due to the unclear material removal profile (MRP) mechanism, obliquely axial UVAP is not widely used in the processing field. This paper introduces the obliquely axial UVAP method in research processes, mainly focusing on the fixed point MRP analysis of the obliquely axial UVAP. Based on Hertz's contact theory, polishing pressure, the length of the semi-long axis (LLA) and the length of the semi-short axis (LSA) of the contact area are calculated under ultrasonic vibration conditions. Meanwhile, the relative linear velocity distribution of the oblique polishing tool in the instantaneous contact area is modeled by mathematical geometry method. A novel model of the MRP distribution for obliquely axial UVAP is proposed following the Preston equation. Subsequently, a series of polishing experiments were carried out to verify this model. The results show that the numerical model has good agreement with the experimental results on MRP, LLA, LSA, material removal depth and material removal rate (MRR). In addition, the material removal capability can be significantly improved by larger ultrasonic amplitude and larger oblique angle. This model not only more clearly elucidates the processing mechanism of obliquely axial UVAP, but also provides theoretical support for the polishing of free-form optical lenses.
Keywords:Ultrasonic vibration-assisted polishing  Material removal profile  Relative linear velocity  Contact area
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号