首页 | 官方网站   微博 | 高级检索  
     


Photoluminescence and hydrogen evolution properties of ZnS:Eu quantum dots
Abstract:In the era of Photonics, design and development of novel rare earth ion-doped quantum dots (QDs) for optoelectronic applications has gained significant interest owing to their outstanding characteristics. Simultaneously, the creation of a new class of photocatalytic materials on the nanoscale is also imperative for environmental purification. Thus, we report on wet chemical synthesis, the structural, morphological, and optical characteristics, fluorescence, and hydrogen evolution of ZnS:Eu (0, 2, 4, and 6 at%) QDs for optoelectronic and photocatalytic applications. Comprehensive structural studies depicted that Eu3+ ions were efficiently substituted into the host matrix and altered the original structure of the ZnS compound. The emission spectra of the ZnS:Eu QDs exhibited distinctive red fluorescence owing to the transition of dopant ions in 5D0 - 7F1, 5D0 - 7F2, 5D0 - 7F3, and 5D0 - 7F4 energy levels of the 4f orbital of the Eu3+ ions. Moreover, the photocatalytic properties of ZnS:Eu (6 at%) QDs possess better catalytic efficiency toward hydrogen evolution through a water splitting mechanism under simulated sunlight irradiation. The observed photocatalytic phenomenon in the synthesized samples agreed well with the luminescence properties exhibited by the QDs.
Keywords:ZnS  Eu  Chemical synthesis  Photoluminescence  Hydrogen evolution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号