首页 | 官方网站   微博 | 高级检索  
     


Novel g-C3N4 nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light
Authors:Soheila Asadzadeh-Khaneghah  Aziz Habibi-Yangjeh  Kunio Yubuta
Affiliation:1. Faculty of Science, Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran;2. Institute for Materials Research, Tohoku University, Aoba-ku, Sendai, Japan
Abstract:We fabricated novel ternary nanocomposites through integration of C-dots (carbon dots), BiOCl, and nanosheets of graphitic carbon nitride (g-C3N4 nanosheets) by a cost-effective route. The fabricated photocatalysts were subsequently characterized by XRD, EDX, TEM, HRTEM, XPS, FT-IR, UV-vis DRS, TGA, BET, and PL methods to gain their structure, purity, morphology, optical, textural, and thermal properties. In addition, the degradation intermediates were identified by gas chromatography-mass spectroscopy (GC-MS). Photocatalytic performance of the synthesized samples was studied by photodegradations of three cationic (RhB, MB, and fuchsine), one anionic (MO) dyes, one colorless (phenol) pollutant and removal of an inorganic pollutant (Cr(VI)) under visible light. It was revealed that the ternary nanocomposite with loading 20% of BiOCl illustrated superlative performances in the selected photocatalytic reactions compared with the corresponding bare and binary photocatalysts. Visible-light photocatalytic activity of the g-C3N4 nanosheets/CDs/BiOCl (20%) nanocomposite was 42.6, 27.8, 24.8, 20.2, and 15.9 times higher than the pure g-C3N4 for removal of RhB, MB, MO, fuchsine, and phenol, respectively. Likewise, the ternary photocatalyst showed enhanced activity of 15.3 times relative to the g-C3N4 in photoreduction of Cr(VI). Moreover, the ternary nanocomposite exhibited excellent chemical stability and recyclability after five cycles. Finally, the mechanism for improved photocatalytic performance was discussed based on the band potential positions.
Keywords:Cr (VI) photoreduction  g-C3N4 nanosheet/C-dots/BiOCl  photocatalytic degradation  visible-light-driven photocatalysts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号