首页 | 官方网站   微博 | 高级检索  
     


Removal of inhibitory phenolic compounds by biological activated carbon coupled membrane bioreactor.
Authors:Q T T Thuy  C Visvanathan
Affiliation:Environmental Engineering Course, Department of Urban Engineering, University of Tokyo, Japan. qthuy@env.t.u-tokyo.ac.jp
Abstract:Phenolic compounds cause problems for conventional treatments due to their toxic and inhibitory properties. This work investigated the treatability of phenolic compounds by using two membrane-bioreactor systems, namely: activated sludge coupled with MBR (AS-MBR) and biological granular activated carbon coupled with MBR (BAC-MBR). Initially, the system was fed with phenol (500 mg/L) followed by adding 2,4-dichlorophenol (2,4-DCP). Phenol, 2,4-DCP, TOC and COD removal were higher than 98.99% when the organic load ranged between 1.80 and 5.76 kg/m3.d COD. In addition to MBR system development, removal mechanisms were also investigated. Relatively low values of phenol adsorption of GAC and biomass, and high maximum substrate removal rates obtained from a biokinetic experiment, proved that the removals were mainly due to biodegradation. Analysis of sludge indicated a significant difference in the sludge characteristics of the two reactors. The high EPS content in BAC-MBR led to higher viscosity and poor sludge settling properties. The relationship between sludge properties and EPS components revealed that settleability had no direct correlation with EPS, though it was better correlated to protein/carbohydrate ratios.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号