首页 | 官方网站   微博 | 高级检索  
     


Effect of cyclic plasticity on internal stresses in a metal matrix composite
Authors:M R Daymond  M E Fitzpatrick
Affiliation:(1) Department of Mechanical and Materials Engineering, Queen’s University, K7L 3N6 Kingston, Canada;(2) Department of Materials Engineering, The Open University, MK7 6AA Milton Keynes, U.K.
Abstract:Neutron diffraction has been used to measure the elastic strains in a silicon carbide particle-reinforced aluminum alloy during cyclic plasticity. Strains were recorded in both phases of the material, in sufficient directions to allow for calculation of the internal stresses. The shape misfit stress in the composite was calculated from the macroscopic stress data using an Eshelby-based model. Changes in the misfit stress caused by plastic deformation can be clearly observed. Local plastic anisotropy of the matrix material is also seen and was monitored by comparing results from the two diffraction planes, {111} and {200}, that were measured. The results have been compared to those obtained using an elasto-plastic self-consistent modeling approach, which shows the evolution of load sharing between the matrix and reinforcement, as well as the origin of the plastic anisotropy strains in the aluminum.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号