首页 | 官方网站   微博 | 高级检索  
     

回归分析与抗差卡尔曼滤波协同下大型边坡短期变形的预测方法
引用本文:熊迪,吴浩,杨剑,郭世泰.回归分析与抗差卡尔曼滤波协同下大型边坡短期变形的预测方法[J].金属矿山,2019,48(4):163-167.
作者姓名:熊迪  吴浩  杨剑  郭世泰
作者单位:武汉理工大学资源与环境工程学院,湖北武汉,430070;武汉理工大学资源与环境工程学院,湖北武汉430070;香港理工大学土地测量与地理资讯学系,香港999077;武汉理工大学土木工程与建筑学院,湖北武汉,430070
摘    要:由于边坡滑移影响因素众多,无法建立精确的动力学模型,因此利用传统抗差卡尔曼滤波模型进行边坡短期变形预测十分困难,无法满足大型边坡高精度的预警需求。建立回归分析与抗差卡尔曼滤波协同下大型边坡短期变形预测模型,利用拟合值代替含粗差数据进行滤波预测运算,解决了卡尔曼滤波缺乏对粗差的抗干扰性问题。利用金堆城露天钼矿大型边坡监测数据开展工程案例研究,结果表明2种预测模型都是有效的,但回归分析与抗差卡尔曼滤波协同下大型边坡短期变形预测模型精度和抗差性2个指标都优于传统抗差卡尔曼滤波模型。

关 键 词:大型边坡  变形预测  粗差  回归分析  抗差卡尔曼滤波

Forecast of Short-term Deformation of Large-scale Slope Based on Regression Analysis and Robust Kalman Filter
Xiong Di,Wu Hao,Yang Jian,Guo Shitai.Forecast of Short-term Deformation of Large-scale Slope Based on Regression Analysis and Robust Kalman Filter[J].Metal Mine,2019,48(4):163-167.
Authors:Xiong Di  Wu Hao  Yang Jian  Guo Shitai
Affiliation:1. School of Resource and Environment Engineering,Wuhan University of Technology,Wuhan 430070, China;2. Department of Land Surveying and Geo-informatics,Hongkong Polytechnic University,Hongkong 999077,China;3. School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China
Abstract:Due to many factors affecting the landslide,it is difficult to create an accurate kinetic model, and also it is hard to predict the short-term deformation of large-scale slope by using the traditional dynamic model to meet the demand for high-precision early warning of large-scale slopes. The short-term deformation prediction model for large-scale slope was established under the cooperation of regression analysis and robust Kalman filter. Fitting value was adopted to replace the data containing gross errors for filtering and prediction operation, which solves the problem of Kalman filter lacking for anti-interference to gross errors. The engineering case based on monitoring data of large-scale slope in Jinduicheng Open-pit Molybdenum Mine showed that both of the prediction models are effective, but the precision and robustness of the short-term deformation prediction model of large-scale slope under the cooperation of regression analysis and robust Kalman filter are better than the traditional robust Kalman filter model.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《金属矿山》浏览原始摘要信息
点击此处可从《金属矿山》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号