首页 | 官方网站   微博 | 高级检索  
     


Self‐Sacrifice Template Fabrication of Hierarchical Mesoporous Bi‐Component‐Active ZnO/ZnFe2O4 Sub‐Microcubes as Superior Anode Towards High‐Performance Lithium‐Ion Battery
Authors:Linrui Hou  Lin Lian  Longhai Zhang  Gang Pang  Changzhou Yuan  Xiaogang Zhang
Affiliation:1. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, P.R. China;2. College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China;3. Chinese Academy of Science (CAS) Key Laboratory of Materials for Energy Conversion, Hefei, P.R. China
Abstract:In the work, a facile yet efficient self‐sacrifice strategy is smartly developed to scalably fabricate hierarchical mesoporous bi‐component‐active ZnO/ZnFe2O4 (ZZFO) sub‐microcubes (SMCs) by calcination of single‐resource Prussian blue analogue of Zn3Fe(CN)6]2 cubes. The hybrid ZZFO SCMs are homogeneously constructed from well‐dispersed nanocrstalline ZnO and ZnFe2O4 (ZFO) subunites at the nanoscale. After selectively etching of ZnO nanodomains from the hybrid, porously assembled ZFO SMCs with integrate architecture are obtained accordingly. When evaluated as anodes for LIBs, both hybrid ZZFO and ZFO samples exhibit appealing electrochemical performance. However, the as‐synthesized ZZFO SMCs demonstrate even better electrochemical Li‐storage performance, including even larger initial discharge capacity and reversible capacity, higher rate behavior and better cycling performance, particularly at high rates, compared with the single ZFO, which should be attributed to its unique microstructure characteristics and striking synergistic effect between the bi‐component‐active, well‐dispersed ZnO and ZFO nanophases. Of great significance, light is shed upon the insights into the correlation between the electrochemical Li‐storage property and the structure/component of the hybrid ZZFO SMCs, thus, it is strongly envisioned that the elegant design concept of the hybrid holds great promise for the efficient synthesis of advanced yet low‐cost anodes for next‐generation rechargeable Li‐ion batteries.
Keywords:ZnO/ZnFe2O4 submicrometer‐cubes  hierarchical mesoporous  self‐sacrifice template  synergistic effect  Li‐ion batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号