首页 | 官方网站   微博 | 高级检索  
     


Improved Efficiency in Blue Phosphorescent Organic Light‐Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter
Authors:James S Swensen  Evgueni Polikarpov  Amber Von Ruden  Liang Wang  Linda S Sapochak  Asanga B Padmaperuma
Affiliation:1. Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, MSIN K3–59, Richland, WA 99354, USA;2. Solid State and Materials Chemistry Program, Division of Materials Research Mathematical, and Physical Sciences Directorate, National Science Foundation Arlington, VA 22230
Abstract:Data from a series of phosphorescent blue organic light‐emitting devices with emissive layers consisting of either 4,4′‐bis(N‐carbazolyl)‐2,2′‐biphenyl (CBP):6% bis(4,6‐difluorophenyl)pyridinato‐N,C2](picolinato)iridium(III) (FIrpic) or bis(9‐carbazolyl)benzene (mCP):6% FIrpic show that the triplet energy of the hole and electron transport layers can have a larger influence on the external quantum efficiency of an operating device than the triplet energy of the host material. A maximum external quantum efficiency of 14% was obtained for CBP:6% FIrpic devices which is nearly double all other published CBP:6% FIrpic results. A new host material, 4‐(diphenylphosphoryl)‐N,N‐di‐p‐tolylaniline (DHM‐A2), which has a triplet energy lower than that of FIrpic is also reported. Devices fabricated using DHM‐A2 show improved performance (lower drive voltage and higher external quantum efficiency) over devices using 4‐(diphenylphosphoryl)‐N,N‐diphenylaniline (HM‐A1), a high performance ambipolar DHM‐A2 analogue with a triplet energy greater than FIrpic. Nearly 18% external quantum efficiency was obtained for the DHM‐A2:5% FIrpic devices. The results suggest modified design rules for the development of high performance host materials: more focus can be placed on molecular structures that provide good charge transport (ambipolarity for charge balance) and good molecular stability (for long lifetimes) rather than first focusing on the triplet energy of the host material.
Keywords:phosphorescent OLED  CBP  triplet energy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号