首页 | 官方网站   微博 | 高级检索  
     


3D Printed High‐Loading Lithium‐Sulfur Battery Toward Wearable Energy Storage
Authors:Chenglong Chen  Jiangmin Jiang  Wenjie He  Wu Lei  Qingli Hao  Xiaogang Zhang
Abstract:Wearable electronic devices are the new darling of consumer electronics, and energy storage devices are an important part of them. Here, a wearable lithium‐sulfur (Li‐S) bracelet battery using three‐dimensional (3D) printing technology (additive manufacturing) is designed and manufactured for the first time. The bracelet battery can be easily worn to power the wearable device. The “additive” manufacturing characteristic of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost‐effective manner. Due to the conductive 3D skeleton providing interpenetrating transmission paths and channels for electrons and ions, the 3D Li‐S battery can provide 505.4 mAh g?1 specific capacity after 500 cycles with an active material loading as high as 10.2 mg cm?1. The practicality is illustrated by wearing the bracelet battery on the wrist and illuminating the red light‐emitting diode. Therefore, the bracelet battery manufactured by 3D printing technology can address the needs of the wearable power supply.
Keywords:3D printed  electronic transmission grid framework  high‐loading  Li‐S battery  wearable devices
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号