首页 | 官方网站   微博 | 高级检索  
     


Robot path planner based on deep reinforcement learning and the seeker optimization algorithm
Affiliation:1. School of Information Science and Engineering, Yunnan University, Kunming 650500, China;2. Yunnan Education Department, Kunming 650500, China;1. Part Rolling Key Laboratory of Zhejiang Province, Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, People''s Republic of China;2. State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People''s Republic of China
Abstract:Path planning is one of the key technologies for mobile robot applications. However, the traditional robot path planner has a slow planning response, which leads to a long navigation completion time. In this paper, we propose a novel robot path planner (SOA+A2C) that produces global and local path planners with the seeker optimization algorithm (SOA) and the advantage actor-critic (A2C) algorithm, respectively. In addition, to solve the problems of poor convergence performance when training deep reinforcement learning (DRL) agents in complex path planning tasks and path redundancy when metaheuristic algorithms, such as SOA, are used for path planning, we propose the incremental map training method and path de-redundancy method. Simulation results show that first, the incremental map training method can improve the convergence performance of the DRL agent in complex path planning tasks. Second, the path de-redundancy method can effectively alleviate path redundancy without sacrificing the search capability of the metaheuristic algorithm. Third, the SOA+A2C path planner is superior to the Dijkstra & dynamic window approach (Dijkstra+DWA) and the Dijkstra & timed elastic band (Dijkstra+TEB) path planners provided by the robot operating system (ROS) in terms of path length, path planning response time, and navigation completion time. Therefore, the developed SOA+A2C path planner can serve as an effective tool for mobile robot path planning.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号