首页 | 官方网站   微博 | 高级检索  
     


Two-branch wavelet denoising for accurate spectrum sensing in cognitive radios
Authors:Xiaoyan Li  Fei Hu  Hailin Zhang  Chao Shi
Affiliation:1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, Shaanxi, P.R. China
2. University of Alabama, Tuscaloosa, AL, USA
Abstract:In order to detect the unused spectrum bands (the spectrum holes) efficiently in cognitive radios with low signal-to-noise radio (SNR), we propose to adopt two independent branches of wavelet to detect the singularities of the received signals’ power spectrum density (PSD). The sensing structure is flexible such that we can use one or two branches to cope with different SNRs. Under low SNR condition, each branch uses distinct characteristics between noise and signals in the wavelet transform to eliminate the singularities generated by the noise. By using bandpass filter to calculate PSD values of the subbands which are distinguished by the signal’s singularities, the subband with the minimum PSD value among all of the subbands could be found. Then, the results of the two branches are merged and analyzed in order to make the final decision. Finally, we use signal reconstruction to further remove the noise and then accurately detect the spectrum holes. When the SNR is high, only one branch through the denoising procedure is needed to get accurate sensing result. Our simulation results show that the two-branch wavelet method is more accurate than conventional approaches under given SNRs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号