首页 | 官方网站   微博 | 高级检索  
     


Fabrication of heterojunction SnO2/BiVO4 composites having enhanced visible light photocatalystic activity
Affiliation:1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China;1. Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l’Environnement, 5019 Monastir, Tunisia;2. Laboratoire de Chimie des Polymères (LCP), UMR CNRS 7610, Université Pierre et Marie Curie, 3, rue Galilée, Immeuble St Rapahel, 94200 Ivry, France;3. Unité de Chimie des Procédés (UCP), Département de Chimie et Synthèse Organique (DCSO), Ecole Nationale Supérieure des Techniques Avancées (ENSTA) – Ecole Polytechnique - UMR CNRS 7652, 91128 Palaiseau Cedex, France;4. Université d’Evry‐Val‐d’Essonne, Laboratoire d’Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France;5. CNRS UMR 8587, Université d’Evry‐Val‐d’Essonne, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, 91025 Evry, France;1. State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China;2. Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University, Ministry of Education, School of Chemistry and Materials Science, Harbin 150080, PR China;1. Nano&Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology, Institute of Physics, Federal University of Mato Grosso do Sul, Av. Costa e Silva S/N, 79070-900, Campo Grande, MS, Brazil;2. Centro de Tecnologias Estratégicas do Nordeste, Av. Prof. Luiz Freire, 01, 50740-540 Recife, PE, Brazil;3. Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil;4. Instituto de Física de São Carlos, Universidade de São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil;5. Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan;6. Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Campus do Vale: Av. Bento Gonçalves, 9500 – Agronomia, Porto Alegre, RS, Brazil;1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, Hubei 430062, PR China;2. Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, PR China;3. Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland
Abstract:SnO2/BiVO4 heterojunction composite photocatalysts with various mole ratios have been prepared via a simple hydrothermal method. The structure, composition and optical properties of the SnO2/BiVO4 composites were determined by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface analysis, X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). Photocatalytic activities of the composites were evaluated by studying the degradation of methylene blue (MB) solutions under simulated visible light irradiation (500 W halogen tungsten lamp). The 3:7 mol ratio SnO2/BiVO4 composite exhibited the highest photocatalytic performance, leading to 72% decompositon of MB within 120 min of irradiation.
Keywords:Degradation  Heterojunction  Photocatalytic performance  Visible light
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号