首页 | 官方网站   微博 | 高级检索  
     

脉冲介质阻挡放电等离子体热效应实验
引用本文:田永强,蔡晋生,杨磊磊,张正科.脉冲介质阻挡放电等离子体热效应实验[J].航空动力学报,2019,34(12):2663-2676.
作者姓名:田永强  蔡晋生  杨磊磊  张正科
作者单位:西北工业大学翼型叶栅空气动力学国家级重点实验室,西安710072;西北工业大学航空学院,西安710072;西北工业大学翼型叶栅空气动力学国家级重点实验室,西安710072;西北工业大学航空学院,西安710072;西北工业大学翼型叶栅空气动力学国家级重点实验室,西安710072;西北工业大学航空学院,西安710072;西北工业大学翼型叶栅空气动力学国家级重点实验室,西安710072;西北工业大学航空学院,西安710072
基金项目:国家自然科学基金(11472221)
摘    要:为了研究介质阻挡放电的热效应,将介质阻挡放电等离子体激励器(DBDPA)安装在一个小型量热风洞中,采用微秒级脉冲等离子体电源驱动DBDPA产生放电等离子体。分别应用Lissajous图形分析方法和量热学原理获得了DBDPA的放电功率特性和热功率特性。结果表明:①脉冲介质阻挡放等离子体的放电功率、热功率和热效率均随着激励电压峰-峰值和激励频率的升高而逐渐增大;②脉冲介质阻挡放电等离子体的放电功率和热功率与激励电压和激励频率之间均存在幂函数关系,即脉冲式介质阻挡放电等离子的放电功率正比于激励电压峰-峰值的1.75次方,正比于激励频率的1次方,其热功率正比于激励电压峰-峰值的5.0次方,正比于激励频率的1.5次方;③在激励电压和激励频率这两个参数中,优先选择提高激励电压峰-峰值更有利于提高热效率,也可更快地提升介质阻挡放电等离子热功率中气体加热功率的比例。 

关 键 词:介质阻挡放电  等离子体  放电功率  热功率  Lissajous图  量热
收稿时间:2019/6/25 0:00:00

Experimental on the thermal effects of pulsed dielectric barrier discharge plasma
TIAN Yongqiang,CAI Jinsheng and YANG Leilei.Experimental on the thermal effects of pulsed dielectric barrier discharge plasma[J].Journal of Aerospace Power,2019,34(12):2663-2676.
Authors:TIAN Yongqiang  CAI Jinsheng and YANG Leilei
Affiliation:1.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,China2.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
Abstract:A dielectric barrier discharge plasma actuator (DBDPA) was installed at the test section of a small calorimetric wind tunnel to study the thermal effects of dielectric barrier discharge plasma where the actuator was actuated by a pulsed dielectric barrier discharge plasma power source. The discharge power and the thermal power of the actuations were calculated by Lissajous figure method and the calorimetric principle, respectively, while their characteristics were studied. The following conclusions could be drawn: (1) the discharge power, thermal power and thermal efficiency of the dielectric barrier discharge plasma increased with the peak-peak discharge voltage and the discharge frequency; (2) both the power and thermal power of the actuator were power functions of the peak-peak discharge voltage and the discharge frequency, namely, the discharge power was proportional to the peak-peak discharge voltage to the power 1.75, and to the discharge frequency to the power 1, while the thermal power is proportional to the peak-peak discharge voltage to the power 5.0 and to the discharge frequency to the power 1.5; (3) to increase the thermal efficiency and the proportion of gas heating power in the total thermal power, it is better to give priority to increase the peak-peak discharge voltage instead of the discharge frequency.
Keywords:dielectric barrier discharge  plasma  discharge power  thermal power  Lissajous figure  calorimetry
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号