首页 | 官方网站   微博 | 高级检索  
     


Analytical envelope surface representation of a conical cutter undergoing rational motion
Authors:QingZhen Bi  LiMin Zhu  YuHan Wang  Han Ding
Affiliation:1. State Key Lab. of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dong Chuan Rd., Shanghai, 200240, People’s Republic of China
Abstract:Flank milling with a taper cutter is widely used in industry. The analytical representation of the envelope surface generated by a conical cutter undergoing rational motion is derived by bringing together the theories of line geometry and kinematics. Based on the projective duality between a point and a plane in line geometry, a cone surface is represented as two pieces of rational quadratic Bézier developable surfaces in terms of the plane coordinates instead of the traditional point coordinates. It provides a way to describe and calculate the envelope surface exactly by analyzing the trajectory of a plane undergoing a two-parameter rational motion. The rotation around the axis of the cone is adopted to ensure that the characteristic curve is located on the same piece of rational quadratic Bézier developable surface of the cone. The degenerate cases that the characteristic curve does not exist are also discussed. Examples are provided, in which the envelope surfaces of a conical cutter undergoing rational Bézier and B-spline motions are computed. The results can be applied to tool-path planning and error analysis for five-axis flank milling machining.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号