首页 | 官方网站   微博 | 高级检索  
     


Formulating middle-phase microemulsions using mixed anionic and cationic surfactant systems
Authors:T?Doan  E?Acosta  J?F?Scamehorn  Email author" target="_blank">D?A?SabatiniEmail author
Affiliation:(1) School of Civil Engineering and Environmental Science, The University of Oklahoma, 202 West Boyd, Rm. 334, 73019-0631 Norman, OK;(2) Chemical Engineering and Materials Science Department, University of Oklahoma, 73019 Norman, Oklahoma;(3) Institute for Applied Surfactant Research (IASR), University of Oklahoma, 73019 Norman, Oklahoma
Abstract:Although mixtures of anionic and cationic surfactants can show great synergism, their potential to precipitate and form liquid crystals has limited their use. Previous studies have shown that alcohol addition can prevent liquid crystal formation, thereby allowing formation of middle-phase microemulsions with mixed anionic-cationic systems. This research investigates the role of surfactant selection in designing alcohol-free anionic-cationic microemulsions. Microemulsion phase behavior was studied for three anionic-cationic surfactant systems and three oils of widely varying hydrophobicity trichloroethylene (TCE), hexane, and n-hexadecane]. Consistent with our hypothesis, using a branched surfactant and surfactants with varying tail length allowed us to form alcohol-free middle-phase microemulsion using mixed anionic-cationic systems (i.e., liquid crystals did not form). The anionic to cationic molar ratio required to form middle-phase microemulsions approached 1∶1 for univalent surfactants as oil hydrophobicity increased (i.e., TCE to hexane to n-hexadecane); even for these equimolar systems, liquid crystal formation was avoided. To test the use of these anionic-cationic surfactant mixtures in surfactant-enhanced subsurface remediation, we performed soil column studies: Greater than 95% of the oil was extracted in 2.5 pore volumes using an anionic-rich surfactant system. By contrast, cationic-rich systems performed very poorly (<1% oil removal), reflecting significant losses of the cationic-rich surfactant system in the porous media. The results thus suggest that, when properly designed, anionic-rich mixtures of anionic and cationic surfactants can be efficient for environmental remediation. By corollary, other industrial applications and consumer products should also find these mixtures advantageous.
Keywords:Anionic  cationic  microemulsions  mixtures  surfactant
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号