FS-Net: 面向时序知识图谱推理的频次统计网络 |
| |
作者姓名: | 刘康正 赵峰 金海 |
| |
作者单位: | 大数据技术与系统国家地方联合工程研究中心, 湖北 武汉 430074;服务计算技术与系统教育部重点实验室, 湖北 武汉 430074;集群与网格计算湖北省重点实验室, 湖北 武汉 430074;华中科技大学 计算机科学与技术学院, 湖北 武汉 430074 |
| |
基金项目: | 国家自然科学基金(62072203) |
| |
摘 要: | 时序知识图谱推理吸引了研究人员的极大关注.现有的时序知识图谱推理技术通过建模历史信息取得了巨大的进步.但是,时变性问题和不可见实体(关系)问题仍然是阻碍时序知识图谱推理模型性能进一步提升的两大挑战;而且由于需要对历史子图序列的结构信息和时间依赖信息进行建模,传统的基于嵌入的方法往往在训练和预测过程中具有较高的时间消耗,这极大地限制了推理模型在现实场景中的应用.针对以上困境,提出了一个用于时序知识图谱推理的频次统计网络, FS-Net.一方面, FS-Net不断基于最新的短期历史的事实频次统计,动态地为变化的时间戳上的预测生成时变的得分;另一方面,FS-Net基于当前时间戳上的事实频次统计,为预测补充历史不可见实体(关系);特别地,FS-Net不需要进行训练,而且具有极高的时间效率.在两个时序知识图谱基准数据集上的大量实验,表明了FS-Net相较于基准模型的巨大提升.
|
关 键 词: | 时序知识图谱 事实频次统计 时变性 不可见信息 |
收稿时间: | 2022-07-05 |
修稿时间: | 2022-12-14 |
|
| 点击此处可从《软件学报》浏览原始摘要信息 |
|
点击此处可从《软件学报》下载免费的PDF全文 |
|