首页 | 官方网站   微博 | 高级检索  
     


Design and characterisation of a close-concentric annular reactor for kinetic studies at high temperatures
Authors:D PapadiasU Würtenberger  L EdsbergP Björnbom
Affiliation:a Department of Chemical Engineering and Technology, Chemical Reaction Engineering, KTH-Royal Institute of Technology, Teknikringen 42, SE-100 44 Stockholm, Sweden
b Department of Numerical Analysis and Computing Science, Royal Institute of Technololgy, Teknikringen 42, SE-100 44 Stockholm, Sweden
Abstract:A novel annular reactor for kinetic studies at high temperature and flow conditions has been designed to keep eccentricity tolerances below 10%. In a previous work, we have shown that it is very important to keep such low eccentricity values in order to collect reliable kinetic data from this type of reactors. As proposed in this study, a modified reactor with the use of a spacer could guarantee an annular duct with low levels of eccentricity. Manufacturing tolerances or deformation effects giving rise to eccentricity can be significantly minimised when using this apparatus. The reactor has been both experimentally and theoretically characterised. Carbon monoxide oxidation was used as a model reaction under mass-transfer limited conditions revealing an eccentricity of ∼5%. With such small eccentricity levels, a concentric annular form can be assumed in the reactor analysis. Simple 1D or 2D models can therefore be inexpensively used in the evaluation of the kinetic data. Also, prior to the design of the annular reactor, a numerical investigation was carried out to clarify the effects of eccentricity, physical properties of the carrier gas and the annular aspect ratio on mass-transfer limitations. Contrary to expectations, a considerable increase in the fuel mass-diffusivity by carrier gas substitution did not change the mass-transfer rates for cases when eccentricity and aspect ratios were high.
Keywords:Annular reactor  Eccentricity  Mass transfer  Kinetics  CO combustion  Transport processes  Reaction engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号