首页 | 官方网站   微博 | 高级检索  
     


Component allocation and supporting frame topology optimization using global search algorithm and morphing mesh
Authors:Mahsan Bakhtiarinejad  Soobum Lee  James Joo
Affiliation:1.Department of Mechanical Engineering,University of Maryland Baltimore County,Baltimore,USA;2.Department of Mechanical Engineering,University of Maryland Baltimore County,Baltimore,USA;3.Design & Analysis Branch, Aerospace Vehicles Division,Air Force Research Laboratory,WPAFB,USA
Abstract:This paper proposes a stepwise structural design methodology where the component layout and the supporting frame structure is sequentially found using global search algorithm and topology optimization. In the component layout design step, the genetic algorithm is used to handle system level multiobjective problem where the optimal locations of multiple components are searched. Based on the layout design searched, a new Topology Optimization method based on Morphing Mesh technique (TOMM) is applied to obtain the frame structure topology while adjusting the component locations simultaneously. TOMM is based on the SIMP method with morphable FE mesh, and component relocation and frame design is simultaneously done using two kinds of design variables: topology design variables and morphing design variables. Two examples are studied in this paper. First, TOMM method is applied to a simple cantilever beam problem to validate the proposed design methodology and justify inclusion of morphing design variables. Then the stepwise design methodology is applied to the commercial Boeing 757 aircraft wing design problem for the optimal placement of multiple components (subsystems) and the optimal supporting frame structure around them. Additional constraint on the weight balance is included and the corresponding design sensitivity is formulated. The benefit of using the global search algorithm (genetic algorithm) is discussed in terms of finding the global optimum and independency of initial design guess. It has been proved that the proposed stepwise method can provide innovative design insight for complex modern engineering systems with multi-component structures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号