首页 | 官方网站   微博 | 高级检索  
     

典型华北农村地区冬季HONO的浓度水平及来源分析
引用本文:王玉征,薛朝阳,张成龙,刘鹏飞,张圆圆,陈晖,陈建民,牟玉静,刘俊锋.典型华北农村地区冬季HONO的浓度水平及来源分析[J].环境科学,2019,40(9):3973-3981.
作者姓名:王玉征  薛朝阳  张成龙  刘鹏飞  张圆圆  陈晖  陈建民  牟玉静  刘俊锋
作者单位:中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049;中国科学院城市环境研究所区域大气环境研究卓越创新中心, 厦门 361021,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049;中国科学院城市环境研究所区域大气环境研究卓越创新中心, 厦门 361021,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049;中国科学院城市环境研究所区域大气环境研究卓越创新中心, 厦门 361021,复旦大学环境科学与工程系, 上海 200438,复旦大学环境科学与工程系, 上海 200438,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049;中国科学院城市环境研究所区域大气环境研究卓越创新中心, 厦门 361021,中国科学院生态环境研究中心, 北京 100085;中国科学院大学, 北京 100049;中国科学院城市环境研究所区域大气环境研究卓越创新中心, 厦门 361021
基金项目:国家自然科学基金重大项目(91544211);大气重污染成因与治理攻关项目(DQGG0103)
摘    要:气态亚硝酸(HONO)容易光解,是对流层大气羟基自由基(·OH)的重要来源之一,对区域二次污染的形成具有重要作用.我国在大气HONO观测研究方面主要集中在一些城市区域,而在我国北方农村区域的研究还鲜见报道.为此,本文利用亚硝酸在线分析仪(long path absorption photo meter,LOPAP)于2017年11月在中国科学院农村环境研究站(河北省望都县东白陀村)开展了为期一个月的HONO外场观测,并分析了HONO的浓度水平、变化特征及收支情况.大气HONO的浓度在观测期间呈现夜间高、白天低的日变化特征,夜间最高浓度(体积分数,下同)可达约3. 70×10-9,中午最低浓度也维持在0. 10×10-9以上,表明农村区域存在比较强的HONO来源.采暖前后CO浓度显著提高,而HONO浓度无显著变化,说明供暖燃烧对HONO的贡献较小;夜间机动车直接排放在污染天气和清洁天气条件下对HONO的贡献分别为23. 20%和31. 20%,说明在污染天气条件下存在着某些较强的HONO源;夜间·OH与NO的均相反应HONO平均生成速率可高达0. 40×10-9h-1,比NO2的非均相反应HONO生成速率(0. 24×10-9h-1)高0. 67倍,是HONO的主要来源; HONO在白天存在着很强的未知源,其强度可达1. 37×10-9h-1,对于HONO的贡献达到50%左右.

关 键 词:气态亚硝酸  污染特征  夜间来源  收支情况  未知源
收稿时间:2019/2/21 0:00:00
修稿时间:2019/4/9 0:00:00

Analysis of HONO Concentration and Source in Typical Rural Area of North China
WANG Yu-zheng,XUE Chao-yang,ZHANG Cheng-long,LIU Peng-fei,ZHANG Yuan-yuan,CHEN Hui,CHEN Jian-min,MU Yu-jing and LIU Jun-feng.Analysis of HONO Concentration and Source in Typical Rural Area of North China[J].Chinese Journal of Environmental Science,2019,40(9):3973-3981.
Authors:WANG Yu-zheng  XUE Chao-yang  ZHANG Cheng-long  LIU Peng-fei  ZHANG Yuan-yuan  CHEN Hui  CHEN Jian-min  MU Yu-jing and LIU Jun-feng
Affiliation:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China,Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China,Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China and Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;University of Chinese Academy of Sciences, Beijing 100049, China;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Abstract:Nitrous acid (HONO) is easily photolyzed with the production of·OH, which plays an important role in the formation of regional secondary pollution. In China, research of HONO observation is concentrated mainly in urban areas and is rarely reported in rural areas. In our study, a one-month HONO field observation was conducted at the Station of Rural Environment, Chinese Academy of Sciences (Dongbaituo Village, Wangdu County, Hebei Province) in November 2017 using the long path absorption photo meter (LOPAP). The concentration, variety characteristics, and budget of HONO was studied. During the observation period, HONO exhibited pronounced diurnal variation with low concentrations in the day and high concentration in the evening. The highest concentration at night was about 3.70×10-9, and the lowest concentration at noon was about 0.10×10-9, indicating the presence of a strong source of HONO in rural areas. The CO concentration increased significantly before and after heating, whereas the HONO concentration did not change significantly, indicating that heating combustion contributed less to HONO, Direct emission of motor vehicles at night contributed 23.20% and 31.20% to HONO in polluted and clean weather conditions, respectively, indicating the presence of strong sources of HONO in polluted weather conditions. The average formation rate of HONO at night from homogeneous reaction of·OH and NO could reach 0.40×10-9 h-1, which is 0.67 times higher than that of heterogeneous reaction of NO2 (0.24×10-9 h-1), indicating that the homogeneous reaction of·OH and NO is the main source of HONO at night. HONO has a strong unknown source in the daytime with an intensity reaching 1.37×10-9 h-1, which contributes about 50% to HONO.
Keywords:nitrous acid  pollution characteristics  nighttime source  daytime budget  unknown source
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号