首页 | 官方网站   微博 | 高级检索  
     

基于无监督学习卷积神经网络的振动信号模态参数识别
作者姓名:方宁  周宇  叶庆卫  李玉刚
作者单位:宁波大学 信息科学与工程学院, 浙江 宁波 315211
基金项目:国家自然科学基金资助项目(61071198);浙江省自然科学基金资助项目(LY13F010015);浙江省科技创新团队资助项目(2013TD21);宁波大学科研基金(学科项目)资助项目(xkx11417)。
摘    要:针对现有的时域模态参数识别方法大多存在难定阶和抗噪性差的问题,提出一种无监督学习的卷积神经网络(CNN)的振动信号模态识别方法。该算法在卷积神经网络的基础上进行改进。首先,将应用于二维图像处理的卷积神经网络改成处理一维信号的卷积神经网络,其中输入层改成待提取模态参数的振动信号集合,中间层改成若干一维卷积层、抽样层,输出层得到的为信号对应的N阶模态参数集合;然后,在误差评估中,对网络计算结果(N阶模态参数集)进行振动信号重构;最后,将重构信号和输入信号之间差的平方和作为网络学习误差,使得网络变成无监督学习网络,避免模态参数提取算法的定阶难题。实验结果表明,当所构建的卷积神经网络应用于模态参数提取时,与随机子空间识别(SSI)算法及其局部线性嵌入(LLE)算法对比,在噪声干扰下,构建的卷积神经网络识别精度要高于SSI算法与LLE算法,具有抗噪声强、避免了定阶难题的优点。

关 键 词:卷积神经网络  模态参数  无监督学习  学习误差  随机子空间识别  局部线性嵌入  
收稿时间:2016-08-19
修稿时间:2016-10-29
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号