首页 | 官方网站   微博 | 高级检索  
     

Cd2+胁迫条件下椭圆小球藻的生理应答
引用本文:李建宏,浩云涛,翁永萍.Cd2+胁迫条件下椭圆小球藻的生理应答[J].水生生物学报,2004,28(6):659-663.
作者姓名:李建宏  浩云涛  翁永萍
作者单位:南京师范大学生命科学学院,南京,210097
基金项目:教育部留学归国人员基金(2003),江苏省教育厅自然基金资助(2003)
摘    要:研究了一株高重金属抗性的椭圆小球藻在Cd2+胁迫下的生理变化,结果显示,在10-240μmol/L浓度的Cd2+胁迫下,随着金属离子浓度提高,叶绿素的总量减少,光合放氧受到抑制.Cd2+离子浓度的提高,导致了氧自由基的大大增加,同时脯氨酸、SOD(超氧化物歧化酶)以及POD(过氧化物酶)水平均大大提高.结果提示这些与消除自由基有关的代谢产物的积累,有利于细胞减少胁迫造成的损伤.CAT(过氧化氢酶)对Cd2+离子是敏感的,其活性与胁迫浓度呈负相关.  

关 键 词:小球藻        自由基    SOD    POD  
文章编号:1000-3207(2004)06-0659-05
修稿时间:2004年2月18日

PHYSICAL RESPONSES TO Cd2+ STRESS IN CHLORELLA ELLIPSOIDEA
LI Jian-Hong,HAO Yun-Tao,WENG Yong-Ping.PHYSICAL RESPONSES TO Cd2+ STRESS IN CHLORELLA ELLIPSOIDEA[J].Acta Hydrobiologica Sinica,2004,28(6):659-663.
Authors:LI Jian-Hong  HAO Yun-Tao  WENG Yong-Ping
Abstract:A high heavy metal resistant Chlorella ellipsoidea strain was isolated from the electroplating waste water.Former researches had showed the alga had high tolerance to heavy metals and was able to eliminate Cu2+ ,Zn2+ ,Ni2+ and Cd2+ effectively from water.So it could be used for decreasing heavy metal pollution.To understand the physical mechanisms of the alga against the toxicities of heavy metals,we studied the physical responses of the alga to Cd2+ stress.In this research,we focused on the physical reactions to radical injuring in cells caused by Cd2+ . Methods:Photosynthesis O2 release was measured by membrane oxygen electrode;Superoxide anion radical was measured by xanthine oxidase and NBT system;Superoxide dismutase (SOD) activity is determined by hydroxylamine assay-developed from xanthine oxidase assay;Catalase(CAT)was measured by molybdic acid method;Peroxidase(POD)was determined by method of guaiacol oxidation;Proline was measured by the method of Sulosalicylic acid. Results:Chlorophyll content and photosynthetic O2 release were measured as indicators of cadmium toxicities.Results showed that,between 10 to 240μmol/L Cd2+ ,total chlorophyll content and photosynthesis O2 release decreased when the ion concentration increased.The lower concentration of Cd2+ ,10μmol/L induced higher chlorophyll-a,it was 130% of the control.Cadmium caused the ratio of chlorophyll-a/b rising. When Cd2+ was over 30μmol/L,the ratio of chla/b rose from 1.22 to 2.61 These showed Cd2+ in this concentration range could cause toxicities to the C.ellipsoidea. So this concentration range of Cd2+ was used as stress to induce radicals and observe the physical responses of the alga.Results showed Cd2+ produced more O2-. in algal cells.When Cd2+ was 90μmol/L,O2-. was 2.07 times as much as the control in 72hrs after incubated.Meanwhile,POD was induced strongly and reached the highest level.It’s content was 4.84 times concentration of the control.But for 120μmol/L and 240μmol/L Cd2+ ,POD content was 4.10 and 3.63 times respectively;There were four SOD isoenzyme bands in the electrophoresis gel.The least molecular band was Fe-SOD,and the other three were Mn-SOD.Highest SOD content was induced by 120μmol/L Cd2+ ,reached 1.3 times as much as the control.Two types of SOD showed different responses to cadmium stress.Mn-SOD obviously increased.That caused total amount of SOD increasing.But Fe-SOD decreased;Proline content and Cd2+ concentration in algal cells was correlated.When Cd2+ was 10μmol/L,proline content was 1 89 times of the control.Proline reached highest level,2.86 times of the control in 120μmol/L Cd2+ .These results suggested that increasing of free radical elimination enzymes and substances was helpful to the algae to resistant cadmium injuring.However,as one of the most important anti-oxidation enzymes,CAT showed an opposite response to the Cd2+ .Its content went down with Cd2+ going up.When Cd2+ was 90μmol/L,CAT activity was 23.36% of the control.This meant CAT was very sensitive to Cd2+ . Conclusion:Cd2+ could induce radicals which were toxic to algal cell.The high heavy metal resistant C.ellipsoidea strain could produce more SOD,POD and proline to decrease the injuries.  
Keywords:
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《水生生物学报》浏览原始摘要信息
点击此处可从《水生生物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号