首页 | 官方网站   微博 | 高级检索  
     


Exciton wavefunction coupled surface plasmon resonance for In-rich InGaN film with perforated aluminum cylindrical micropillar arrays
Authors:Yeu-Jent Hu  Jen-Cheng Wang  Tzer-En Nee
Affiliation:a Department of Electrical Engineering, Technology and Science Institute of Northern Taiwan, Taipei 112, Taiwan, ROC
b Department of Electronic Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC
Abstract:The optical characterization of excitons coupled with surface plasmon resonance (SPR) for InGaN/GaN heterostructures with perforated cylindrical micropillar arrays is investigated. We analyze the optical characteristics of excitons coupled with SPR for InGaN/GaN heterostructures with perforated cylindrical micropillars, as shown in measurements of the photoluminescence (PL) spectra over a broad range of temperatures between 20 and 300 K. From the temperature-dependent PL spectra, we observe the better SPR coupling effects, resulting in less carrier confinement in the InGaN energy band. The magnitude of the redshift of the emission peak shown by the sample with the coated aluminum (Al) pattern is larger than that shown by the sample with no metal film. This was due to the presence of more exciton coupling surface plasmons within the Al/InGaN interface. The enhancement of the PL intensity of the sample with the deposited Al pattern film can be attributed to a stronger SPR coupling interaction with the excitons. The experimental results indicate that a perforated Al cylindrical micropillar array can significantly affect carrier confinement, enhancing the quantum efficiency of Al/In-rich InGaN heterostructures due to the interaction of the SPR coupling effect between the InGaN quantum dot-like region and the Al film.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号