首页 | 官方网站   微博 | 高级检索  
     


Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink
Authors:AA Alfaryjat  A Dobrovicescu  D Stanciu
Affiliation:Faculty of Mechanical Engineering and Mechatronics, University Politehnica of Bucharest, Splaiul Independentei nr. 313, sector 6, Bucuresti, Romania
Abstract:Based on the Second Law of Thermodynamics, the entropy generation is studied for laminar forced convection flow of different nanoparticles (Al2O3, CuO and SiO2) mixed with water through a hexagon microchannel heat sink (HMCHS). The effects of different heat fluxes and Reynolds numbers on the entropy generation for different nanofluids, volume fractions and nanoparticles diameter are investigated. The heat flux is in the range of 125 to 500 kW·m-2 and the Reynolds numbers vary between 200 and 1500. The thermal, frictional and total entropy generations are calculated by integrating the volumetric rate components over the entire HMCHS. The results clearly show that the rise in the heat flux leads to an increase in the thermal entropy generation for nanofluids and pure water but they don't have any influence on the frictional entropy generation. Moreover, when the Reynolds number increases, the frictional entropy generation increases while the thermal entropy generation decreases. The results revealed that at low heat fluxes and high Reynolds numbers, pure water gives the lowest entropy generation, while at high heat flux the nanofluid has to be used in order to lower the overall irreversibility.
Keywords:Microchannel heat sink  Nanofluids  Entropy generation  Numerical analysis  Laminar flow
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号