首页 | 官方网站   微博 | 高级检索  
     

Mn-Si-Cr系Q&P钢的准静态、动态力学行为对比
引用本文:金玉亮,徐聪聪,杨会光,吴限,王振强,高古辉.Mn-Si-Cr系Q&P钢的准静态、动态力学行为对比[J].中国冶金,2022,32(8):68-74.
作者姓名:金玉亮  徐聪聪  杨会光  吴限  王振强  高古辉
作者单位:1.哈尔滨东安发动机集团有限公司工艺技术部, 黑龙江 哈尔滨 150006;
2.中国船舶集团有限公司七一一研究所, 上海 201108;
3.哈尔滨工程大学超轻材料与表面工程教育部重点实验室,黑龙江 哈尔滨150001;
4.北京交通大学机电学院, 北京 100044
基金项目:国家自然科学基金项目资助项目(52001084);黑龙江省博士后基金资助项目(LBH-Z16046);中央高校基本业务费资助项目(GK2100260329)
摘    要:利用万能试验机和分离式霍普金森压杆装置(SHPB)对Mn-Si-Cr系Q&P钢分别进行了准静态和动态压缩试验。在应变速率为0.001、0.01、0.1 s-1和900、1 500、2 200、3 000 s-1情况下分别得到了准静态和动态压缩真应力-真应变曲线,并利用扫描电子显微镜进行压缩后的显微组织和断口分析,利用X射线衍射仪(XRD)对压缩变形试样进行物相分析。结果表明,准静态和动态压缩变形条件下,试验钢的真应力-真应变曲线均可大致分为弹性变形和塑性变形2个阶段,且没有明显的屈服平台。准静态压缩条件下应变速率强化效果不明显但应变强化效应较显著。动态压缩条件下应变强化效应不明显,但展现出一定的应变速率强化效应。准静态变形后,试样中心区域板条组织倾向沿近水平方向(垂直于压缩方向)定向排布。动态变形后,约有1/3试样发生了断裂,未发生断裂的试样中心出现45°方向剪切带,其附近板条组织发生了“屈曲”。准静态变形后残余奥氏体含量下降明显,而动态压缩试样中,残余奥氏体含量只有略微下降,且块状M/A岛内部出现扭曲变形与开裂,这可能是导致部分试样断裂的诱因。动态压缩破坏试样断口整体呈现45°剪切断裂,一端发生微孔聚集性断裂,另外一端发生剪切断裂。

关 键 词:Q&P钢  准静态力学  动态力学  变形  残余奥氏体  分离式霍普金森压杆  

Comparison of quasi-static and dynamic mechanical behavior of Mn-Si-Cr (Q&P) steel
JIN Yu-liang,XU Cong-cong,YANG Hui-guang,WU Xian,WANG Zhen-qiang,GAO Gu-hui.Comparison of quasi-static and dynamic mechanical behavior of Mn-Si-Cr (Q&P) steel[J].China Metallurgy,2022,32(8):68-74.
Authors:JIN Yu-liang  XU Cong-cong  YANG Hui-guang  WU Xian  WANG Zhen-qiang  GAO Gu-hui
Affiliation:1. Technical Department, Harbin Dong′an Engine (Group) Corporation Ltd., Harbin 150006, Heilongjiang, China; 2. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China; 3. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, Heilongjiang, China; 4. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:The quasi-static and dynamic compression experiments of Mn-Si-Cr quenching-partitioning (Q&P) steel were carried out by universal testing machine and Split Hopkinson Pressure Bar (SHPB), respectively. The true stress-strain curves were obtained at the strain rate of 0.001, 0.01, 0.1 s-1 and 900, 1 500, 2 200, 3 000 s-1, respectively. Scanning electron microscopy (SEM) was employed to observe microstructure and fracture surface after compression. Phase analysis of specimens under the two conditions was conducted by XRD. The results show that under both quasi-static and dynamic deformation conditions, the true stress-strain curves of steel can be roughly divided into two stages, i.e., elastic and plastic deformation, and no obvious yield platform is observed. Under quasi-static condition, the strain rate strengthening effect is not obvious while the strain hardening effect is remarkable. In contrast, under dynamic deformation, the strain hardening effect is not obvious but shows a certain strain rate strengthening effect. After quasi-static deformation, directional arrangement of lath structure occurs along nearly horizontal direction (i.e. perpendicular to compression direction) in the central region of sample. After dynamic deformation, about 1/3 of samples are fractured and 45° shearing band appears in the central region of unfractured sample with twisting lath structure near this region. There is a significant decrease in residual austenite content of specimens after quasi-static deformation, while only small decrease of retained austenite is found after dynamic deformation. Meanwhile, the serious deformation and microcracking are observed in the blocky M/A island, which may be the cause of fracture for some samples. On the damage fracture of dynamic deformation specimens, the whole sample undergoes 45° shearing fracture with microvoid coalescence fracture on one end and shearing fracture on the other end.
Keywords:Q&P steel  quasi-static mechanics  dynamic mechanics  deformation  retained austenite  Split Hopkinson Pressure Bar  
点击此处可从《中国冶金》浏览原始摘要信息
点击此处可从《中国冶金》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号