首页 | 官方网站   微博 | 高级检索  
     


Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure
Abstract:In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.
Keywords:pattern  dielectric barrier discharge  impurities  Penning ionization  discharge uniformity  seed electron  
本文献已被 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号