首页 | 官方网站   微博 | 高级检索  
     

电弧离子镀制备 TiSiN 纳米复合涂层
引用本文:田灿鑫,周小东,周思华,杨兵,付德君.电弧离子镀制备 TiSiN 纳米复合涂层[J].表面技术,2015,44(8):15-19,37.
作者姓名:田灿鑫  周小东  周思华  杨兵  付德君
作者单位:1. 周口师范学院 物理与机电工程学院,河南 周口,466001;2. 武汉大学 物理科学与技术学院,武汉,430072;3. 武汉大学 动力与机械学院,武汉,430072
基金项目:国家自然科学基金资助项目(11405117, 11405280);河南省教育厅科学技术研究重点项目(14B140021);周口师范学院博士科研启动经费资助项目(zksybscx201210)
摘    要:目的在SiH4气氛下制备Si掺杂的TiSiN纳米复合涂层,为SiH4用于工业化TiSiN涂层生产提供依据。方法采用电弧离子镀技术,在SiH4气氛下,于单晶硅和硬质合金衬底上制备Si掺杂的TiSiN纳米复合涂层,研究SiH4流量对TiSiN涂层化学组分、微观结构、硬度和耐磨性能的影响。结果 SiH4流量对TiSiN纳米复合涂层的微观结构、硬度及摩擦系数的影响明显。随着SiH4流量的增加,TiSiN涂层由柱状晶生长的晶体结构逐渐转变为纳米晶镶嵌于非晶基体的复合结构。Si在涂层中以Si3N4非晶相存在,随着涂层中Si含量逐渐增加,TiN晶粒尺寸逐渐减小,Si3N4起到细化晶粒的作用。在42 m L/min的SiH4流量下,涂层硬度高达4100HV0.025。在对磨材料为硬质合金的条件下,TiSiN涂层摩擦系数小于0.6。结论 SiH4气氛下可以制备出Ti N纳米晶镶嵌于Si3N4非晶相结构的TiSiN纳米复合涂层,涂层的显微硬度较高。SiH4可以作为Si源用于TiSiN纳米复合涂层的工业化生产。

关 键 词:电弧离子镀  TiSiN纳米复合涂层  SiH4  流量  力学性能  硬度  摩擦系数
收稿时间:5/7/2015 12:00:00 AM
修稿时间:2015/8/20 0:00:00

Deposition of TiSiN Nanocomposite Coatings by Arc Ion-plating
TIAN Can-xin,ZHOU Xiao-dong,ZHOU Si-hu,YANG Bing and FU De-jun.Deposition of TiSiN Nanocomposite Coatings by Arc Ion-plating[J].Surface Technology,2015,44(8):15-19,37.
Authors:TIAN Can-xin  ZHOU Xiao-dong  ZHOU Si-hu  YANG Bing and FU De-jun
Affiliation:School of Physics and Electromechnical Engineering, Zhoukou Normal University, Zhoukou 466001, China,School of Physics and Technology, Wuhan University, Wuhan 430072, China,School of Physics and Technology, Wuhan University, Wuhan 430072, China,School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China and School of Physics and Electromechnical Engineering, Zhoukou Normal University, Zhoukou 466001, China
Abstract:Objective To fabricate Si-doped TiSiN nanocomposite coatings in SiH4 ambient, and to provide approaches to fabricate TiSiN nanocomposite coatings using SiH4 in industrial production process. Methods TiSiN coatings were deposited on Si and cemented carbide substrates by cathodic arc ion plating in SiH4 ambient. The effects of SiH4 flow rate on the chemical composition, microstructure, mechanical and tribological properties of the TiSiN nanocomposite coatings were systemically investigated. Results The SiH4 flow rate had an obvious effect on the chemical composition, microstructure, mechanical and tribological properties of the TiSiN nanocomposite coating. With the increase of SiH4 flow rate, the structure of fabricated TiSiN coatings changed from columnar grain to composite structure of nanocrystalline embedded in amorphous phase matrix. The Si added in the coatings was in the amorphous Si3 N4 phase, with the Si content increased, the grain size of TiN decreased, which had a grain refining effect. The microhardness reached up to 4100HV0. 025 at the SiH4 flow rate of 42 mL / min (6. 3 at. % Si in the coating). Friction coefficients of TiSiN nanocomposite coatings increased with the increasing SiH4 flow rate when tested against carbide balls, and the friction coefficient was less than 0. 6. Conclusion The TiSiN nanocomposite coating of nanocrystalline embedded in amorphous matrix could be fabricated in SiH4 ambient. The microhardness was relatively high. SiH4 could be used for the deposition of TiSiN nanocomposite coatings in commercial process.
Keywords:arc ion-plating  TiSiN nanocomposite coatings  SiH4 flow rate  mechanical performance  microhardness  friction coefficient
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号