首页 | 官方网站   微博 | 高级检索  
     


Neurophysiological indices of strategy development and skill acquisition
Authors:ME Smith  LK McEvoy  A Gevins
Affiliation:EEG Systems Laboratory and SAM Technology, San Francisco, CA 94105, USA. michael@eeg.com
Abstract:In order to examine neurophysiological changes associated with the development of cognitive and visuomotor strategies and skills, spectral features of the EEG were measured as participants learned to perform new tasks. In one experiment eight individuals practiced working memory tasks that required development of either spatial or verbal rehearsal and updating strategies. In a second experiment six individuals practiced a video game with a difficult visuomotor tracking component. The alpha rhythm, which is attenuated by functional cortical activation, was affected by task practice. In both experiments, a lower-frequency, centrally distributed alpha component increased between practice sessions in a task-independent fashion, reflecting an overall decrease in the extent of cortical activation after practice. A second, higher-frequency, posterior component of the alpha rhythm displayed task-specific practice effects. Practice in the verbal working memory task resulted in an increase of this signal over right posterior regions, an effect not seen after practice with the spatial working memory task or with the video game. This between-task difference presumably reflects a continued involvement of the posterior region of the right hemisphere in tasks that invoke visuospatial processes. This finding thus provides neurophysiological evidence for the formation of a task-specific neurocognitive strategy. In the second experiment a third component of the alpha rhythm, localized over somatomotor cortex, was enhanced in conjunction with acquisition of tracking skill. These alpha band results suggest that cortical regions not necessary for task performance become less active as skills develop. In both experiments the frontal midline (Fm) theta rhythm also displayed increases over the course of test sessions. This signal is associated with states of focused concentration, and its enhancement might reflect the conscious control over attention associated with maintenance of a task-appropriate mental set. Overall, the results suggest that the EEG can be used to monitor practice-related changes in the patterns of cortical activity that are associated with task processing. Additionally, these results highlight the importance of ensuring that subjects have developed stable strategies for performance before drawing inferences about the functional architecture underlying specific cognitive processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号