首页 | 官方网站   微博 | 高级检索  
     


Photoluminescence Detection of Biomolecules by Antibody‐Functionalized Diatom Biosilica
Authors:Debra K Gale  Timothy Gutu  Jun Jiao  Chih‐Hung Chang  Gregory L Rorrer
Affiliation:1. Department of Chemical Engineering Oregon State University Corvallis, OR 97331 (USA);2. Department of Physics Portland State University Portland, OR 97207 (USA)
Abstract:Diatoms are single‐celled algae that make microscale silica shells called “frustules”, which possess intricate nanoscale features imbedded within periodic two‐dimensional pore arrays. In this study, antibody‐functionalized diatom biosilica frustules serve as a microscale biosensor platform for selective and label‐free photoluminescence (PL)‐based detection of immunocomplex formation. The model antibody rabbit immunoglobulin G (IgG) is covalently attached to the frustule biosilica of the disk‐shaped, 10‐µm diatom Cyclotella sp. by silanol amination and crosslinking steps to a surface site density of 3948 ± 499 IgG molecules µm?2. Functionalization of the diatom biosilica with the nucleophilic IgG antibody amplifies the intrinsic blue PL of diatom biosilica by a factor of six. Furthermore, immunocomplex formation with the complimentary antigen anti‐rabbit IgG further increases the peak PL intensity by at least a factor of three, whereas a non‐complimentary antigen (goat anti‐human IgG) does not. The nucleophilic immunocomplex increases the PL intensity by donating electrons to non‐radiative defect sites on the photoluminescent diatom biosilica, thereby decreasing non‐radiative electron decay and increasing radiative emission. This unique enhancement in PL emission is correlated to the antigen (goat anti‐rabbit IgG) concentration, where immunocomplex binding follows a Langmuir isotherm with binding constant of 2.8 ± 0.7 × 10?7 M .
Keywords:antibodies  biosensors  biosilica  diatoms  photoluminescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号