首页 | 官方网站   微博 | 高级检索  
     


Impact of thick PMMA plates by long projectiles at low velocities. Part II: Effect of confinement
Abstract:A hybrid experimental–numerical investigation of the penetration process in unconfined and confined thick polymethylmethacrylate (PMMA) plates was carried out. The confinement was applied by insertion of the polymeric plate into a conical steel ring. The response of such plates to the impact of long hard steel projectiles having an ogive-head shape in the range of velocities of 165 < V0 < 260 (m/s), was investigated experimentally. The results show that unconfined targets were perforated and broken due to combined effect of penetration and cracking. By contrast, the confined targets were not perforated and could withstand repeated impacts due to suppression of the brittle damage mechanism by the confinement. The tests were modeled using 3D explicit finite element analyses. A good agreement regarding the trajectory of the projectile and the depths of penetration was obtained. The numerical results show that the confinement introduces a negative triaxiality and even some plasticity within the confined plates prior to impact. The increase of plastic failure strain of the PMMA at negative triaxiality reduces the ductile damage during penetration, while the hydrostatic pressure reduces significantly the brittle fracture mechanism. The resisting force to the penetration depends on the failure strain–triaxality relationship, and does not necessarily increase with higher confinement levels.
Keywords:PMMA  Confinement  Finite elements  Impact  Long projectiles  Penetration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号