首页 | 官方网站   微博 | 高级检索  
     

基于深度学习和边缘检测的动态场景下鲁棒SLAM
作者姓名:李璐琪
作者单位:湘潭大学自动化与电子信息学院,湖南 湘潭411105
基金项目:湖南省科技创新计划项目;国家重点研发计划项目;广西重点研发计划项目;国家自然科学基金项目
摘    要:机器人在执行同时定位与地图创建(simultaneous localization and mapping,SLAM)的复杂任务时,容易受到移动物体的干扰,导致定位精度下降、地图可读性较差、系统鲁棒性不足,为此提出一种基于深度学习和边缘检测的SLAM算法。首先,利用YOLOv4目标检测算法获取场景中的语义信息,得到初步的语义动静态区域,同时提取ORB特征点并计算光流场,筛选动态特征点,通过语义关联进一步得到动态物体,利用canny算子计算动态物体的轮廓边缘,利用动态物体以外的静态特征点进行相机位姿估计,筛选关键帧,进行点云叠加,利用剔除动态物体的点云信息构建静态环境地图。本文算法在公开数据集上与ORB_SLAM2进行对比,定位精度提升90%以上,地图可读性明显增强,实验结果表明本文算法可以有效降低移动物体对定位与建图的影响,显著提升算法稳健性。

关 键 词:同时定位与地图创建  深度学习  目标检测  语义信息  动态场景  边缘检测
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《传感技术学报》浏览原始摘要信息
点击此处可从《传感技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号