首页 | 官方网站   微博 | 高级检索  
     


Comparisons of Biodiesel Produced from Unrefined Oils of Different Peanut Cultivars
Authors:J P Davis  D Geller  W H Faircloth  T H Sanders
Affiliation:(1) Market Quality and Handling Research Unit, USDA-ARS, Raleigh, NC, USA;(2) Departments of Biological and Agricultural Engineering, The University of Georgia, Athens, GA, USA;(3) National Peanut Research Laboratory, USDA-ARS, Dawson, GA, USA
Abstract:Biodiesels were prepared according to standard procedures from unrefined oils of eight commercially available peanut cultivars and compared for differences in physical properties important to fuel performance. Dynamic viscosity, kinematic viscosity and density were measured from 100 to 15 °C, and differences (< 0.05) in these physical properties occurred more frequently at lower temperatures when comparing the different cultivars. Unlike data for the oil feedstocks, no meaningful correlations among biodiesel fatty acid profiles and either fuel viscosity or density were observed. Low temperature crystallization of the peanut biodiesels was measured via differential scanning calorimetry. Increased concentrations of long chain saturated fatty acid methyl esters (FAME) were associated with an increased propensity for low temperature crystallization, and the single FAME category most associated with low temperature crystallization was C:24. Tempering at 10 °C followed by analysis of the soluble fractions (winterization), improved crystallization properties and confirmed the importance that long chain saturated FAMEs play in the final functionality of peanut biodiesel. Peanut data is also compared to data for canola and soy biodiesels, as these feedstocks are more common worldwide for biodiesel production. Overall, this work suggests that minimizing the concentration of long chain saturated FAMEs within peanut biodiesel, either through processing and/or breeding efforts would improve the low temperature performance of peanut biodiesel.
Keywords:Biodiesel  Crystallization  Viscosity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号