首页 | 官方网站   微博 | 高级检索  
     


Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model
Authors:Ha H Bui  Ryoichi Fukagawa  Kazunari Sako  Shintaro Ohno
Affiliation:1. Center of Excellence (COE) Promotion Program, Ritsumeikan University, Kusatsu, Shiga, Japan;2. Department of Civil Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan;3. Civil Engineering Design Division, Kajima Corporation, Kusatsu, Shiga, Japan
Abstract:Simulation of large deformation and post‐failure of geomaterial in the framework of smoothed particle hydrodynamics (SPH) are presented in this study. The Drucker–Prager model with associated and non‐associated plastic flow rules is implemented into the SPH code to describe elastic–plastic soil behavior. In contrast to previous work on SPH for solids, where the hydrostatic pressure is often estimated from density by an equation of state, this study proposes to calculate the hydrostatic pressure of soil directly from constitutive models. Results obtained in this paper show that the original SPH method, which has been successfully applied to a vast range of problems, is unable to directly solve elastic–plastic flows of soil because of the so‐called SPH tensile instability. This numerical instability may result in unrealistic fracture and particles clustering in SPH simulation. For non‐cohesive soil, the instability is not serious and can be completely removed by using a tension cracking treatment from soil constitutive model and thereby give realistic soil behavior. However, the serious tensile instability that is found in SPH application for cohesive soil requires a special treatment to overcome this problem. In this paper, an artificial stress method is applied to remove the SPH numerical instability in cohesive soil. A number of numerical tests are carried out to check the capability of SPH in the current application. Numerical results are then compared with experimental and finite element method solutions. The good agreement obtained from these comparisons suggests that SPH can be extended to general geotechnical problems. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:smoothed particle hydrodynamics (SPH)  failure flows  elastic–  plastic model  tensile instability  tension cracking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号