首页 | 官方网站   微博 | 高级检索  
     


A new approach to stability analysis of variable speed machining systems
Authors:Tsu-Chin Tsao  Mark W McCarthy  Shiv G Kapoor
Affiliation:

a Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Illinois, U.S.A.

Abstract:This paper presents a new method for the stability analysis of variable speed machining systems. By using spindle angular position as the independent variable, the system dynamics are modeled as a linear periodic time-varying system with fixed delay. This representation is proven much easier to analyze and to numerically simulate than the time-varying delay representation, which traditionally uses the real-time as the independent variable. With a finite difference scheme, the infinite dimensional periodic time-varying system is approximated by a finite dimensional periodic time-varying discrete system, which in turn is converted to a time-invariant system by multiplying the time-varying state transition matrix over one period of speed variation. System-relative stability becomes tractable by spectral radius analysis. This approach makes possible the quantitative characterization of system stability as a function of variable speed profiles as well as other system parameters such as stiffness and damping of the cutting process and the tool/workpiece structure. Verifications for the face milling process by numerical simulation and experiment for both constant and variable speed are given.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号