首页 | 官方网站   微博 | 高级检索  
     


Prediction of anisotropic material behavior based on multiresolution continuum mechanics in consideration of a characteristic length scale
Authors:Dockjin Lee  Yoon-Suk Chang  Jae-Boong Choi  Moon-Ki Kim
Affiliation:1. SAINT, Sungkyunkwan University, Suwon, 440-746, Korea
2. Department of Nuclear Engineering, Kyung Hee University, Suwon, 446-701, Korea
3. School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
Abstract:New advanced materials have received more attention from many scientists and engineers because of their outstanding chemical, electrical, thermal, optical, and mechanical properties. Since the design of advanced material by experiments requires high cost and time, numerical approaches have always been of great interest. In this paper, finite element analysis of anisotropic material behavior has been carried out based on a multiresolution continuum theory. Gurson-Tvergaard-Needleman (GTN) damage model has been applied as a constitutive model at macroscale. Effects of plastic anisotropy on deformation behavior are assessed using Hill??s 48 yield function for anisotropic material and von Mises yield function for isotropic material, respectively. The material parameters for both isotropic and anisotropic damage models have systematically been determined from microstructure through unit cell modeling. The newly proposed linear approximation of local velocity gradient resolved the underdetermined problem of the previous homogenization process. Anisotropic material behaviors of a tensile specimen have been investigated by the proposed multiresolution continuum theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号