首页 | 官方网站   微博 | 高级检索  
     


Soil Moisture Variations with Land Use along the Precipitation Gradient in the North–South Transect of the Loess Plateau
Abstract:Knowledge of soil moisture spatial variation with land use along the precipitation gradient is necessary to improve land management and guide restoration practice in the water‐limited Chinese Loess Plateau. This study selected 45 sampling points at 11 sites across the north–south transect of the Loess Plateau based on the precipitation gradient and land use. Results showed that the vertical profiles of soil moisture revealed large variations with the precipitation gradient changing, especially in the surface layer (0–100 cm). Significant linear correlation existed between the average soil moisture of the profile and the mean annual precipitation (MAP) for each land use type (p < 0·05). Hereinto, the soil moisture under the grassland was affected more greatly by precipitation. The soil moisture under each land use commonly revealed the trend as farmland > grassland > shrubland > woodland, while it might be higher under the woodland than the shrubland in the surface layer in regions with MAP <500 mm. The soil moisture of woodland or shrubland at the selected points was below or approximate to the permanent wilting point in regions with MAP <520 mm. Covariance analysis confirmed the effects of land use and MAP on the soil moisture in depth of 100–300 cm, and it showed land use did not pose significant effects in the surface layer. In addition, our study indicated that it is necessary to reconsider and re‐evaluate the current vegetation restoration strategy in the perspective of vegetation sustainability and soil water availability, in which woodland and shrubland were selected on a large scale in the arid and semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:soil moisture  land use type  precipitation gradient  restoration strategy  north–  south transect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号