首页 | 官方网站   微博 | 高级检索  
     


Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China
Authors:H X Chen  L M Zhang  D S Chang  S Zhang
Affiliation:1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Abstract:The 2008 Wenchuan earthquake induced a large number of landslides, and a vast amount of loose landslide materials deposited on steep hill slopes or in channels. Such loose materials can become sources of deadly debris flows once triggered by storms. On 13 August 2010, a storm swept Yingxiu and its vicinity, triggering a catastrophic debris flow with a volume of 1.17?million?m3 in Xiaojiagou Ravine. The debris flow buried 1,100?m of road, blocked a river and formed a debris flow barrier lake. A detailed field study was conducted to understand the initiation mechanisms and runout characteristics of this debris flow. Two types of debris flows are identified, namely hill-slope debris flow and channelized debris flow. The hill-slope debris flow was triggered in the forms of firehose effect, rilling and landsliding, whereas the channelized debris flow was triggered in the form of channel-bed failure. This debris flow was a water?Crock flow since most particles were gravel, cobble or larger rocks and the fraction of silt and clay was less than 2%. Grain contact friction, pore-pressure effects and inertial grain collision were the three most important physical interactions within the debris flow. Such interactions yielded a smaller runout distance (593?m) compared with those of mud?Crock flows of similar size.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号