首页 | 官方网站   微博 | 高级检索  
     


Engineering Bimetallic Ag–Cu Nanoalloys for Highly Efficient Oxygen Reduction Catalysts: A Guideline for Designing Ag‐Based Electrocatalysts with Activity Comparable to Pt/C‐20%
Authors:Xiaoqiang Wu  Fuyi Chen  Nan Zhang  Adnan Qaseem  Roy L Johnston
Affiliation:1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, China;2. School of Chemistry, University of Birmingham, Birmingham, UK
Abstract:Development of highly active and stable Pt‐free oxygen reduction reaction catalysts from earth‐abundant elements remains a grand challenge for highly demanded metal–air batteries. Ag‐based alloys have many advantages over platinum group catalysts due to their low cost, high stability, and acceptable oxygen reduction reaction (ORR) performance in alkaline solutions. Nevertheless, compared to commercial Pt/C‐20%, their catalytic activity still cannot meet the demand of commercialization. In this study, a kind of catalysts screening strategy on Agx Cu100?x nanoalloys is reported, containing the surface modification method, studies of activity enhancement mechanism, and applied research on zinc–air batteries. The results exhibit that the role of selective dealloying (DE) or galvanic displacement (GD) is limited by the “parting limitation”, and this “parting limitation” determines the surface topography, position of d‐band center, and ORR performance of Agx Cu100?x alloys. The GD‐Ag55Cu45 and DE‐Ag25Cu75 catalysts alloys present excellent ORR performance that is comparable to Pt/C‐20%. The relationship between electronic perturbation and specific activity demonstrates that positive shift of the d‐band center (≈0.12 eV, relative to Ag) for GD‐Ag55Cu45 is beneficial for ORR, which is contrary to Pt‐based alloys (negative shift, ≈0.1 eV). Meanwhile, extensive electrochemical and electronic structure characterization indicates that the high work function of GD‐Ag55Cu45 (4.8 eV) is the reason behind their excellent durability for zinc–air batteries.
Keywords:Ag‐based alloys  d‐band center  electronic perturbation  oxygen reduction  parting limitation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号