首页 | 官方网站   微博 | 高级检索  
     


The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy
Authors:M R Rokni  A Zarei-Hanzaki  C A Widener  P Changizian
Affiliation:1. Department of Materials & Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines & Technology (SDSM&T), Rapid City, SD, USA
2. School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abstract:In order to study flow stress behavior for hot working of a typical Al-Zn-Mg-Cu alloy, experimental stress-strain data obtained from isothermal hot compression tests at strain rates of 0.004, 0.04, and 0.4 s?1 and deformation temperatures of 400, 450, 500, and 520 °C were used to develop the constitutive equation. The peak stress decreased with increasing deformation temperature and decreasing strain rate. The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent-type equation. Employing an Arrhenius-type constitutive equation, the influence of strain has been incorporated by considering the related material constants as functions of strain. The accuracy of the developed constitutive equations has been evaluated using standard statistical parameters such as correlation coefficient and average absolute relative error. The results indicate that the proposed strain-dependent constitutive equation gives an accurate and precise estimate of the flow stress in the relevant temperature range.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号