首页 | 官方网站   微博 | 高级检索  
     


Measurement of GABAA receptor function in rat cultured cerebellar granule cells by the Cytosensor microphysiometer
Authors:Maria J Brown  Martyn D Wood  Martyn C Coldwell  David R Bristow
Affiliation:Division of Neuroscience, School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT;*SmithKline Beecham Pharmaceuticals, Psychiatry Research, Third Avenue, Harlow, Essex CM19 5AW
Abstract:
  1. γ-Aminobutyric acid (GABA), acting via the GABAA receptor, increased the extracellular acidification rate of rat primary cultured cerebellar granule cells, measured by the Cytosensor microphysiometer.
  2. The optimal conditions for the measurement of GABAA receptor function in cerebellar granule cells by microphysiometry were: cells seeded at 9–12×105 cells/transwell cup and maintained in vitro for 8 days, GABA stimulation performed at 25°C, with a stimulation time of 33 s.
  3. GABA stimulated a concentration-dependent increase in the extracellular acidification rate with an EC50 of 2.0±0.2 μM (mean±s.e.mean, n=7 experiments) and maximal increase (Emax) over basal response of 15.4±1.2%.
  4. The sub-maximal GABA-stimulated increase in acidification rate could be potentiated by the 1,4-benzodiazepine, flunitrazepam (100 nM). The 10 nM GABA response showed the maximal benzodiazepine facilitation (GABA alone, 1.4 μV s−1, GABA+flunitrazepam, 3.8 μV s−1, mean increment over basal, n=7).
  5. The GABA-stimulated increase in acidification rate was inhibited by the GABAA antagonist, bicuculline (100 μM) (90% inhibition at 1 mM GABA).
  6. The results of this study show that activation of GABAA receptors in rat cerebellar granule cells caused an increase in the extracellular acidification rate; an effect which was potentiated by benzodiazepines and inhibited by a GABAA receptor antagonist. This paper defines the conditions and confirms the feasibility of using microphysiometry to investigate GABAA receptor function in primary cultured CNS neurones. The microphysiometer provides a rapid and sensitive technique to investigate the regulation of the GABAA receptor in populations of neurones.
Keywords:Benzodiazepine  GABAA receptors  microphysiometer  GABA receptor function  cerebellar granule cells  flunitrazepam
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号