首页 | 官方网站   微博 | 高级检索  
     


Impact of the starch source on the physicochemical properties and biodegradability of different starch‐based films
Authors:Cláudia Leites Luchese  Patrícia Benelli  Jordana Corralo Spada  Isabel Cristina Tessaro
Affiliation:Laboratory of Membrane Separation Processes, Laboratory of Packaging Technology and Membrane Development, Department of Chemical Engineering, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2777 Porto Alegre, Rio Grande do Sul, Brazil
Abstract:Concern about environmental issues has motivated research into the development of biodegradable packaging from renewable sources. Natural polymers such as starch constitute a good alternative for diminishing the use of nonbiodegradable and nonrenewable components in the packaging industry. However, depending on the botanical source, films with different properties are formed. The aim of this study was to evaluate the film‐forming capacity of different starch sources (cassava, corn, potato, and wheat) by casting with starch contents from 2 to 6%. Principal component analysis methodology was used to evaluate the correlation between the formulations and their physicochemical and mechanical properties. It was not possible to produce continuous films based on potato starch, probably because of its very low amylose content (10%). The corn‐, cassava‐, and wheat‐starch‐based films were characterized by their thicknesses (0.06–0.22 mm), moisture contents (19–26%), water solubilities (13.7–26.5%), water‐vapor permeabilities (WVPs; 0.19–0.48 g mm h?1 m?2 kPa?1), wettabilities (35–106°), biodegradabilities in soil, and thermal and mechanical properties (tensile strength = 1.9–6.7 MPa, elongation = 41–166%, and Young's modulus = 8–127 MPa). The wheat starch films presented higher WVPs and lower mechanical properties. The cassava starch films presented lower wettabilities and good mechanical properties; this suggested that their use in packaging for products, such as fruits and vegetables, with higher water activities could be feasible. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46564.
Keywords:biodegradable  biomaterials  biopolymers and renewable polymers  degradation  films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号