首页 | 官方网站   微博 | 高级检索  
     

基于YOLOv3-HM的手部姿态估计方法研究
作者姓名:刘佳  石豪  陈大鹏  卞方舟  徐闯
作者单位:1.南京信息工程大学自动化学院210044;2.江苏省智能气象探测机器人工程研究中心210044;3.江苏省大数据分析技术重点实验室210044;4.江苏省气象能源利用与控制工程技术研究中心210044;
基金项目:国家自然科学基金(61773219,62003169)
摘    要:二维手部姿态估计是人机交互领域的一项关键技术。为增强复杂环境下系统鲁棒性,提高手势姿态估计精度,提出一种基于目标检测和热图回归的YOLOv3-HM算法。首先,利用YOLOv3算法从RGB图像中识别框选手部区域,采用CIoU作为边界框损失函数;然后,结合热图回归算法对手部的21个关键点进行标注;最终,通过回归手部热图实现二维手部姿态估计。分别在FreiHAND数据集与真实场景下进行测试,结果表明,该算法相较于传统手势检测算法在姿态估计精度和检测速度上均有所提高,对手部关键点的识别准确率达到99.28%,实时检测速度达到59 f/s,在复杂场景下均能精准实现手部姿态估计。

关 键 词:手部姿态估计  YOLOv3-HM  热图回归  关键点检测
本文献已被 维普 等数据库收录!
点击此处可从《测控技术》浏览原始摘要信息
点击此处可从《测控技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号