首页 | 官方网站   微博 | 高级检索  
     


Mitochondrial Ca2+ Dynamics in MCU Knockout C. elegans Worms
Authors:Pilar lvarez-Illera  Paloma García-Casas  Rosalba I Fonteriz  Mayte Montero  Javier Alvarez
Affiliation:Institute of Biology and Molecular Genetics (IBGM), Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid and CSIC, Ramón y Cajal, 7, E-47005 Valladolid, Spain; (P.Á.-I.); (P.G.-C.); (R.IF.); (M.M.)
Abstract:Mitochondrial Ca2+] plays an important role in the regulation of mitochondrial function, controlling ATP production and apoptosis triggered by mitochondrial Ca2+ overload. This regulation depends on Ca2+ entry into the mitochondria during cell activation processes, which is thought to occur through the mitochondrial Ca2+ uniporter (MCU). Here, we have studied the mitochondrial Ca2+ dynamics in control and MCU-defective C. elegans worms in vivo, by using worms expressing mitochondrially-targeted YC3.60 yellow cameleon in pharynx muscle. Our data show that the small mitochondrial Ca2+ oscillations that occur during normal physiological activity of the pharynx were very similar in both control and MCU-defective worms, except for some kinetic differences that could mostly be explained by changes in neuronal stimulation of the pharynx. However, direct pharynx muscle stimulation with carbachol triggered a large and prolonged increase in mitochondrial Ca2+] that was much larger in control worms than in MCU-defective worms. This suggests that MCU is necessary for the fast mitochondrial Ca2+ uptake induced by large cell stimulations. However, low-amplitude mitochondrial Ca2+ oscillations occurring under more physiological conditions are independent of the MCU and use a different Ca2+ pathway.
Keywords:C  elegans  mitochondria  mitochondrial calcium uniporter  MCU  knockout  calcium dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号