首页 | 官方网站   微博 | 高级检索  
     

微流体器官芯片研究进展
引用本文:苏皓然,赵萍,邓小燕,樊瑜波,刘肖.微流体器官芯片研究进展[J].医用生物力学,2019,34(3):320-326.
作者姓名:苏皓然  赵萍  邓小燕  樊瑜波  刘肖
作者单位:北京航空航天大学 生物与医学工程学院,生物力学与力生物学教育部重点实验室;北京航空航天大学 生物医学工程高精尖创新中心,北京航空航天大学 生物与医学工程学院,生物力学与力生物学教育部重点实验室;北京航空航天大学 生物医学工程高精尖创新中心,北京航空航天大学 生物与医学工程学院,生物力学与力生物学教育部重点实验室;北京航空航天大学 生物医学工程高精尖创新中心,北京航空航天大学 生物与医学工程学院,生物力学与力生物学教育部重点实验室;北京航空航天大学 生物医学工程高精尖创新中心,北京航空航天大学 生物与医学工程学院,生物力学与力生物学教育部重点实验室;北京航空航天大学 生物医学工程高精尖创新中心
基金项目:国家自然科学基金项目(31570947,61533016,11332003,11421202), 中国科协青年人才托举工程项目(2016QNRC001)
摘    要:微流体技术是指通过操控亚毫米尺度的流体,从而实现流体精确控制的技术。近年来,利用微流体技术,实现了器官芯片的构建。器官芯片是指具有生理功能的微模型,在连续灌注的微米级腔室中培养活细胞,以模拟组织和器官的生理功能。由于具有生理功能的器官芯片具有功能明确、微环境可控、测量信息丰富、实验试剂消耗量小、成本低、有望实现自动化和高通量等众多优点,在药物开发领域具有巨大的应用前景,有望解决药物开发中细胞培养和动物实验中的瓶颈问题,近年来引起学术界的极大关注。目前为止,虽然器官芯片还是很年轻的行业,但是研究人员已开发了部分微流体器官芯片,并探索其潜在的应用可能,包括药物靶点优化、药物筛选和毒性试验、生物标志物鉴定等。分析近年来利用微流控技术制造的器官芯片所取得的进展,以及这些结果对临床研究的意义。

关 键 词:微流体技术    器官芯片    药物筛选
收稿时间:2018/4/15 0:00:00
修稿时间:2018/6/8 0:00:00

The Research Progress of Microfluidic Organ-on-Chips
SU Haoran,ZHAO Ping,DENG Xiaoyan,FAN Yubo and LIU Xiao.The Research Progress of Microfluidic Organ-on-Chips[J].Journal of Medical Biomechanics,2019,34(3):320-326.
Authors:SU Haoran  ZHAO Ping  DENG Xiaoyan  FAN Yubo and LIU Xiao
Affiliation:Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University and Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University;Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University
Abstract:Microfluidic technology refers to the technique of precise fluid control by manipulating submillimeter-scale fluids. In recent years, the use of microfluidic technology has realized the construction of organ-on-chips. The organ-on-chip refers to a micro-model with physiological functions, and cultivating living cells in a continuously perfused micro-chamber to simulate the physiological functions of tissues and organs. As the physiological function of the organ-on-chip has many advantages such as definite function, controllable microenvironment, rich measurement information, low chemical consumption, low cost, promising automation and high throughput, it has a huge application prospect in the field of drug development to solve the bottleneck problems in cellular and animal experiments, which has caused a great concern in the academic community. Although the organ-on-chip is still a very young research field, some microfluidic organ-on-chips have been developed and their potential applications are explored, including drug target optimization, drug screening and toxicity tests, and biomarker identification. In this review, the progress made in microfluidic organ microchips and their potential significance in clinical research were analyzed.
Keywords:microfluidic technology  organ-on-chips  drug screening
本文献已被 CNKI 等数据库收录!
点击此处可从《医用生物力学》浏览原始摘要信息
点击此处可从《医用生物力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号