首页 | 官方网站   微博 | 高级检索  
     


Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary‐lattice Boltzmann method
Authors:J Wu  C Shu  Y H Zhang
Affiliation:1. Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore;2. Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K.
Abstract:A variant of immersed boundary‐lattice Boltzmann method (IB‐LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB‐LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non‐slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non‐slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:immersed boundary method  lattice Boltzmann method  moving objects  incompressible flow  velocity correction  non‐slip condition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号