首页 | 官方网站   微博 | 高级检索  
     


Uniconazole inhibits stress-induced ethylene in wheat and soybean seedlings
Authors:T E Kraus  D P Murr  R A Fletcher
Affiliation:1. Department of Environmental Biology, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
2. Department of Horticultural Science, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
Abstract:Previous studies have shown that uniconazole inhibits ethylene synthesis and protects plants from various stresses. The present research was conducted to delineate the mechanism of ethylene inhibition by uniconazole (E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol]. Following heat stress of 48°C for 3 h, the shoots of the control wheat seedlings became desiccated, and the seedlings lost 23% of their fresh mass 8 h after stress. The control soybean seedlings had epinastic unifoliate leaves 5 h after foliar application (4.4 g.a.i./ha) of the herbicide triclopyr (3,5,6-trichloro-2-pyridinyl)oxyacetic acid]. Soil drench applications of uniconazole, a potent member of the triazole family, reduced these symptoms associated with heat and herbicide stress in wheat (5.0 mg/L) and soybean (0.4 mg/L) seedlings, respectively. Basal ethylene production was inhibited 32 and 48% by uniconazole in the wheat and acotyledonous soybean seedlings, respectively. Following a 48°C heat stress, 1-aminocyclopropane-1-carboxylic acid (ACC) levels increased 40% in both the control and uniconazole-treated wheat seedlings. After triclopyr application, ACC levels increased 400% in both the control and uniconazoletreated soybean seedlings. The increased ACC levels, following stress, were accompanied by increased ethylene production from the control, but not from the uniconazole-treated wheat and acotyledonous soybean seedlings. Uniconazole treatment did not significantly change the basal or stress-induced N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) levels compared to controls. These results suggest that uniconazole inhibits ethylene synthesis by interfering with the conversion of ACC to ethylene in wheat and acotyledonous soybean seedlings. Ethylene production and ACC conversion were not inhibited by uniconazole in excised soybean cotyledons. These results indicate that different ethylene-forming enzyme (EFE) systems operate in the soybean acotyledonous seedling and cotyledon, and the system in the former is inhibited by uniconazole.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号