首页 | 官方网站   微博 | 高级检索  
     


Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries
Authors:Yang He  Jin-Shu Cai
Affiliation:Department of chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Abstract:Polyvinyl alcohol (PVA) was used as a hydrogen bond functionalizing agent to modify multi-walled carbon nanotubes (CNTs). Nanoparticles of Fe3O4 were then formed along the sidewalls of the as-modified CNTs by the chemical coprecipitation of Fe2+ and Fe3+ in the presence of CNTs in an alkaline solution. The structure and electrochemical performance of the Fe3O4/CNTs nanocomposite electrodes have been investigated in detail. Electrochemical tests indicated that at the 145th cycle, the CNTs-66.7 wt.%Fe3O4 nanocomposite electrode can deliver a high discharge capacity of 656 mAh g−1 and stable cyclic retention. The improvement of reversible capacity and cyclic performance of the Fe3O4/CNTs nanocomposite could be attributed to the nanosized Fe3O4 particles and the network of CNTs.
Keywords:Multi-walled carbon nanotubes  Fe3O4 nanoparticles  Composite  Electrochemical properties  Lithium ion batteries
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号