首页 | 官方网站   微博 | 高级检索  
     


Surface Position-Resolved Thermophysical Properties for Metallic Alloys
Authors:Y W Kim
Affiliation:(1) Department of Physics, Lewis Laboratory 16, Lehigh University, Bethlehem, Pennsylvania, 18015, U.S.A.
Abstract:Thermophysical properties are collective measures of a material to transport dynamical quantities of physical nature on its surface or through the bulk. As such, the exact nature of couplings between particles in a many-body assembly of building block atoms or molecules sensitively determines their values. The couplings between nearest neighbors are the product of the local elemental composition and the material phase. In this study, thermal cycling of a four-element Wood’s alloy specimen brings out cadmium-rich patches to the top surface of the specimen. An assembly of such patches leads to depth-dependent deviations of elemental composition from that of the bulk. Surface-layer atoms are driven to form a high temperature laser-produced plasma (LPP), and time-resolved spectroscopy of their emissions show the variability of elemental composition over surface positions as well as over depth from the surface. These thermal history-driven composition anomalies contribute to significant variability in the measured values of spectral emissivity and thermal diffusivity.
Keywords:Benard–  Marangoni instability  near-surface composition anomaly  position-resolved composition  Wood’  s alloy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号