首页 | 官方网站   微博 | 高级检索  
     


Investigation on particular phase morphology of immiscible polyamide 12 and polystyrene blends prepared via anionic ring‐opening polymerization
Authors:Bozhen Wu  Tingxiu Xie  Guisheng Yang
Affiliation:1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Joint Laboratory of Polymer Science and Technology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;2. Graduate School of the Chinese Academy of Sciences, Beijing 100190, China;3. Shanghai Genius Advanced Materials, Shanghai 201109, China
Abstract:In this article, the particular phase morphology of immiscible polyamide 12/polystyrene (PA12/PS) blends prepared via in situ anionic ring‐opening polymerization of laurolactam (LL) in the presence of polystyrene (PS) was investigated. Scanning electron microscopy (SEM) and Fourier Transform infrared Spectroscopy (FTIR) were used to analyze the morphology of the blends. The results show that the PS is dispersed as small droplets in the continuous matrix of PA12 when PS content is 5 wt%. However, when the PS content is higher than 10 wt%, two particular phase morphologies appeared. Firstly, dispersed PS‐rich particles with the spherical inclusions of PA12 can be found when PS content is between 10 and 15 wt%. Then the phase inversion occurred (the phase morphology of the PA12/PS blends changed from the PS dispersed/PA12 matrix to PA12 dispersed/PS matrix system) when PS content is 20 wt% or higher, which is unusual for polymer blends prepared via conventional methods such as mixing, hydrolytic polycondensation and so on. The formation of this particular phase morphology development was simply elucidated via a phase inversion mechanism. Furthermore, the stability of the phase morphology of the PA12/PS blends after annealing at 230°C was also investigated via SEM. POLYM. ENG. SCI., 52:1831–1838, 2012. © 2012 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号