首页 | 官方网站   微博 | 高级检索  
     


Prediction and verification of heat capacities for pure ionic liquids
Authors:Zhengxing Dai  Yifeng Chen  Chang Liu  Xiaohua Lu  Yanrong Liu  Xiaoyan Ji
Affiliation:1.State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China;2.Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden;3.Swerim AB, Box 812, SE-97125 Luleå, Sweden
Abstract:The heat capacity of ionic liquids is an important physical property, and experimental measuring is usually used as a common method to obtain them. Owing to the huge number of ionic liquids that can be potentially synthesized, it is desirable to acquire theoretical predictions. In this work, the Conductor-like Screening Model for Real Solvents (COSMO-RS) was used to predict the heat capacity of pure ionic liquids, and an intensive literature survey was conducted for providing a database to verify the prediction of COSMO-RS. The survey shows that the heat capacity is available for 117 ionic liquids at temperatures ranging 77.66–520 K since 2004, and the 4025 data points in total with the values from 76.37 to 1484 J·mol-1·K-1 have been reported. The prediction of heat capacity with COSMO-RS can only be conducted at two temperatures (298 and 323 K). The comparison with the experimental data proves the prediction reliability of COSMO-RS, and the average relative deviation (ARD) is 8.54%. Based on the predictions at two temperatures, a linear equation was obtained for each ionic liquid, and the heat capacities at other temperatures were then estimated via interpolation and extrapolation. The acquired heat capacities at other temperatures were then compared with the experimental data, and the ARD is only 9.50%. This evidences that the heat capacity of a pure ionic liquid follows a linear equation within the temperature range of study, and COSMO-RS can be used to predict the heat capacity of ionic liquids reliably.
Keywords:Ionic liquids  Heat capacity  COSMO-RS
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号